
Announcements!

Attendance Raffle!

● Sign in at meetings
● Get entered for a chance to win:

○ Kindle Paperwhite
○ Amazon Echo Dot
○ ...and more!

signin.umlacm.org

Be an ACM member, get sweatshirt

● Membership to the national ACM (not our student chapter!) is
$20/year
○ You get access to journals and textbooks
○ And probably some other academic stuff

● This is not necessary to be a member of the club!
● Show us you’re a member and get one of our UML ACM

sweatshirts!

Lightning Talks!

● November 13 (Wednesday, 5:30 pm)
● Talk about something cool for 5-10 minutes!
● Some Ideas:

○ Side projects or research
○ Internship/Co-op
○ Intro To [Software/Tool/Language]
○ Why emacs is better than vim

● Interested? Contact us!

Come Visit! DAN 302

● We have an office!
● Come stop by to:

○ Chat
○ Get help with homework
○ Learn how to navigate the CS curriculum at UML

● If the door’s open, stop by and say hi!

Career Fair Tomorrow!

● 4-7 pm, Tsongas Center
● Meet at the office (DAN 302) by 3:15 to head over together!
● Get a job!

Introduction to Git

(Slides stolen from Joshua Hassler)

By Amy Mazzucotelli

Version Control

● A way to keep track of code
○ Decent ways

■ Perforce
■ SVN
■ Git

○ Bad Ways
■ Dropbox
■ Copy of copy of copy of...

Why Use VC

● By yourself
○ Allows you to back up your work
○ Good for versioning and deployment

● Work with others
○ Concurrent developers without problems
○ Controls merging
○ Central place to get all code

● ALL COMPANIES USE SOME VC

What is Git?

● Git is a version control
○ Created by Linus Torvalds while developing Linux kernel

● Distributed Architecture
○ Each copy is it’s own Repository

● Git operates locally
● Takes snapshots called “commits”

Lets Git some of the vocab

● Commit - Snapshot of work at a point in time
● Repository (Repo) - Container that stores the codebase,

history, and metadata
● Remote - A copy of a repo stored on a server

What are remotes?

The Three Stages
of Git

● Modified - The file has been
modified

● Staging - I’m gonna commit it
● Committed - I committed it!

Demo Time
Setting Up a Repo and
Committing

Demo Notes:

● Make a new repo on GitHub (browser)
○ It will show you how to get set up

● Locally: make a new folder, run “git init” from inside it
● Git remote add origin <repository>
● Git config user.email “your email”
● Git config user.name “your name”
● First commit: set upstream (origin=remote, master= your local branch)

○ Git push -u origin master
● Commit, pull, push

Some Reminders on Commits

● Commits are cheap
○ Do them often

● Commit messages should be short and descriptive
○ Keep them in the present tense

■ Bad message: “Updated the code to do the thing”
■ Good message: “Update foo to handle negative

values preventing crashes”
○ Code should show how, messages tell why
○ You will thank yourself in the future

Branching
● Master - The “main” branch and source of truth
● Branch - a copy of the code

What are Branches

● A split in the code
○ Multiple concurrent copies

● Split and go back
○ After working in your

branch, you merge it back
○ Done through a Pull

Request

Demo Time
Branching/Merging

Demo Notes

● Git branch <branchName> (makes the branch)
● Git checkout <branchName> (switches you to the branch)
● To merge your branch back into master:

○ Git checkout master
○ Git merge <branchName>

● Merge conflicts: easier with a UI!
○ <<<HEAD
○ (what you just tried to commit)
○ =======
○ (what someone else changed it to)
○ >>>>>commithash

Extras

● Use SSH instead of HTTP
○ Ssh-keygen
○ Copy the public (.pub) file to your GitHub Settings->SSH and GPG Keys
○ Checkout the repo with the git@github url
○ Never have to enter your password again!

● .gitignore
○ *.o (ignore any file ending with .o)
○ a.out (ignore a specific file)
○ temp/** (ignore everything in the temp folder, including subdirectories)

